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Fig. 1. A batch of renders from the HSSD dataset, a popular embodied AI dataset with complex apartment-scale scenes (7.4 million triangles per scene on

average). When rendering a batch of 1024 views at 128×128 pixels each, our ray tracer generates frames at an aggregate throughput of 25K frames/sec on a

H100 GPU. We perform a systematic study of batch rendering performance under a range of embodied AI workloads and find that ray tracing based solutions,

rather than rasterization based solutions, are a preferred rendering solution when executing on widely used datacenter-class GPUs.

In this paper we study the problem of efficiently rendering images for embod-
ied AI training workloads, where agent training involves rendering millions
to billions of independent, low-resolution frames, often with simple light-
ing and shading, that serve as the agent’s observations of the world. To
enable high-throughput training from images, we design a flexible, batch-
mode rendering interface that allows state-of-the-art GPU-accelerated batch
world simulators to efficiently communicate with high-performance ren-
dering backends. Using this interface we architect and compare two high-
performance renderers: one based on the GPU hardware-accelerated graph-
ics pipeline and a second based on a GPU software implementation of ray
tracing. To evaluate these renderers and encourage further research by the
graphics community in this area, we build a rendering benchmark for this
under-explored regime. We find that the ray tracing renderer outperforms
the rasterization-based solution across the benchmark on a datacenter-class
GPU, while also performing competitively in geometrically complex environ-
ments on a high-end consumer GPU. When tasked to render large batches
of independent 128×128 images, the ray tracer can exceed 100,000 frames
per second per GPU for simple scenes, and exceed 10,000 frames per second
per GPU on geometrically complex scenes from the HSSD dataset.
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1 INTRODUCTION

In modern embodied AI research, it is common to train AI agents
in simulated 3D environments. In “pixels-to-actions” agent designs,
the AI agent observes the state of the environment using a virtual
camera (e.g., an RGB image, or a depth image) and must learn the
best action to take given a rendered image. Mastering complex skills
requires learning from large amounts of simulated experience drawn
from a diverse set of training environments, so conducting a single
training experiment can require a simulator to render billions of
images across thousands of different 3D scenes.
The rendering scenario described above presents a unique high-

performance rendering challenge. Instead of rendering a stream of
high-quality images of a single scene at real-time rates for human
visual perception, a renderer for embodied AI training is tasked
to render many independent streams of low-fidelity images (low
resolution, simple lighting and shading), depicting many different
environments, at the highest aggregate throughput possible—ideally
several orders of magnitude faster than real-time rates.

Recently, the desire to reduce the cost of training agents has led
to the design of high-performance, batch environment simulators
that execute many environment instances concurrently on the GPU.
However, due to the perceived high cost of rendering, most of these
highly optimized systems do not attempt to render image observa-
tions for agents. Therefore, they do not support pixels-to-actions
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agents, only agents that operate directly on world state (e.g., the
positions of scene objects).

In this paper, we conduct the first systematic study of the question:
how dowe design a high-performance rendering architecture for the
needs of pixels-to-actions AI training experiments? We explore how
to architect high-performance interfaces between a renderer and ex-
isting high-performance, GPU-accelerated, batch world simulation
engines, and investigate how rasterization and ray tracing-based
renderers perform under this workload. Specifically we make the
following contributions:

(1) We design and implement a GPU-driven interface for batch
rendering that allows batched, GPU-accelerated world simula-
tors to communicate environment state (object positions etc)
efficiently through GPU memory to high-throughput batch
renderer backends that render many independent environ-
ments and many views of each environment.

(2) We implement two reference batch renderers using this inter-
face, one rasterization-based renderer patterned after prior
work, and a batch ray tracer. We demonstrate these renderers
deliver state-of-the-art performance in this rendering domain.

(3) We create a rendering benchmark representative of modern
embodied AI workloads by assembling a representative set
of embodied AI learning environments (and corresponding
rendering configurations) from recent research efforts.

(4) We report key findings from experiments studying the per-
formance of batch rendering systems running on high-end
consumer and server-class GPUs. Notably, we find that on a
high-end H100 GPU (a flagship platform for modern AI), a
software ray tracer can significantly outperform a prior state-
of-the-art system based on hardware-accelerated rasteriza-
tion. Given these results and the rendering characteristics of
modern embodied AI research, we argue that contrary to exist-
ing practice, practitioners looking to build high-performance
rendering systems for this workload should consider archi-
tecting around ray tracing solutions going forward.

2 PRELIMINARIES: BATCH SIMULATION FOR

EFFICIENT TRAINING

2.1 The Agent Training Loop

To establish basic system requirements, we first describe key compo-
nents of an end-to-end AI agent training system. Agents are trained
in simulated 3D worlds, often referred to as learning environments
in AI literature. In an environment, an agent observes the state of
the world, and takes actions, determined by its action policy – a
deep neural network (DNN) – as it attempts to complete a task. An
agent’s actions modify the environment’s state. For example, in an
object manipulation task where the goal is for an agent to move
an object to a particular location, an agent’s actions might involve
deciding where to move its grasping arm next. In this example, an
environment simulator would execute basic collision detection op-
erations with 3D geometry and update the positions and velocities
of the agent’s arm and scene objects accordingly.

The system records the results of environment simulation over a
short period of time (often called an episode or rollout), and uses this
information as feedback to a learning algorithm, which modifies the

agent’s action policy to improve its task performance. In practice, it
is common to collect experience from many independent episodes
using the same policy before performing a policy update step (po-
tential inter-episode parallelism). In each episode the environment
may have different initial conditions or even be a completely differ-
ent 3D scene. Then, the updated policy is used to attempt the task
again in new episodes. Experience is collected again, and the results
are used to make new policy updates. To learn complex skills, this
process must repeat for many episodes. For example, it is common
for modern reinforcement learning based learning methods [Sutton
and Barto 2018] to require hundreds of millions of episodes (bil-
lions of simulated time steps) to converge to capable policies [Baker
et al. 2020; Handa et al. 2023; OpenAI et al. 2019b; Peng et al. 2022;
Wijmans et al. 2020].

The process described above features three potentially costly
components: Policy inference/update, which involves DNN inference
and training. Environment simulation, which may require complex
logic like 3D physics calculations and time stepping the environ-
ment. And generating agent observations, which involves producing
a representation of the environment’s current state for the agent’s
policy. When the agent directly observes the environment (e.g.,
it receives 3D coordinates of all scene objects as input), the cost
of generating agent observations is low. However, when training
pixels-to-actions agents, which make decisions based on what a
virtual sensor “sees”, generating observations involves rendering
an image of the 3D scene from the perspective of the sensor. This
can be costly, and reducing this cost is the focus of our work.

2.2 High Throughput via Batched Execution

The need for efficient rendering is now acute because both policy
inference/training and environment simulation have undergone sub-
stantial optimization in recent years. DNN design improvements and
specialized tensor-processing accelerator hardware have steadily
reduced the cost of policy evaluation and training. Similarly, the cost
of environment simulation has been reduced by orders of magnitude
using batch simulator designs that execute thousands of indepen-
dent environments concurrently on the GPU using coherent parallel
execution [Dalton et al. 2020; Freeman et al. 2021; Gulino et al. 2023;
Makoviychuk et al. 2021; Rutherford et al. 2023; Shacklett et al.
2023]. By leveraging the massive compute and memory bandwidth
of modern GPUs, state-of-the-art batch simulators are capable of
executing environments at millions of frames per second, even in
3D environments driven by rigid body physics simulations.

To our knowledge, the only prior work focused on improving the
performance of rendering specifically for AI training workloads is
the BPS3D system [Shacklett et al. 2021], which applied batched sim-
ulation ideas to the renderer itself. BPS3D simultaneously rasterizes
thousands of independent scenes by packing rendering commands
into a single GPU command buffer, which reduced CPU-GPU com-
munication overhead and provided the GPU graphics pipeline with
large amounts of rendering work despite individual scene render-
ings being too low of resolution to effectively utilize a modern GPU.
In our work, we extend the batch-rasterizer design of [Shacklett
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et al. 2021] to interface efficiently with high-performance, GPU-
accelerated batch environment simulators, and reapply the idea of
batch rendering in the context of a ray tracing-based renderer.

3 EMBODIED AI RENDERING WORKLOADS

High-performance batch rendering for embodied AI poses signifi-
cantly different requirements than those placed on typical real-time
rendering systems. At a high level, a batch renderer must integrate
with learning environments driven by high-throughput GPU batch
simulators to render billions of frames of agent observations during
training. In this section we enumerate the resulting requirements
for the high-performance graphics community.

Many environment, many view rendering. Batch simulation train-
ing systems simultaneously execute thousands of independent episodes,
in environments that may involve different 3D scenes. Generating
agent observations for each environment may also involve render-
ing the same scene from multiple viewpoints. For example, each
agent might feature multiple virtual sensors (e.g, a forward and
backward camera), or a single environment might involve multiple
agents cooperating to perform a task. Therefore, after each step of
batch environment simulation, the rendering system is presented
with thousands of independent rendering jobs to complete.

Throughput-maximized rendering. The goal of a rendering system
for agent training is to maximize aggregate frame throughput under
the load of potentially billions of rendering jobs, which arrive in
batches of thousands of independent rendering requests. Common
rendering concerns such as reducing the latency of rendering a
single frame, or ensuring predictable frame rate to avoid visible
stutter, are not requirements of a high-performance batch renderer
for agent training. Instead we seek a rendering architecture that
can receive environment updates from modern high-performance,
GPU-accelerated batch simulators and render these dynamic envi-
ronments at tens of thousands, to millions, of frames per second.

Wide range of geometric complexity. Learning environments can
range in geometric complexity from scenes with many simple geo-
metric primitives (cubes, spheres, etc.) to detailed 3D scans of real-
world environments. For example, scenes in our experiments range
from seven thousand to over seven million triangles. As a result,
renderers must accommodate a wide range of geometry complexity.

Low-resolution output. Many pixels-to-actions AI training experi-
ments operate using low-resolution images: approximately 64×64
to 256×256 in size [OpenAI et al. 2019a; Shacklett et al. 2021; Szot
et al. 2021]. Researchers have observed that many challenging tasks
can still be solved at lower resolutions, and researchers seeking to
generate large amounts of training experience reduce the cost of
image generation and expensive DNN processing (policy evalua-
tion) on these images by reducing image size. As a result, rendered
triangles have small screen-space area (often sub-pixel).

Low-visual-fidelity rendering. Many state-of-the-art training re-
sults depend only on visibility information such as depth, or the
semantic object ID of what is visible in each pixel [Deitke et al. 2020;
Wijmans et al. 2020; Yadav et al. 2023]. Even when RGB rendering is

enabled, the vast majority of agent training experiments do not de-
pend on high-fidelity shading and lighting (e.g., simple Blinn-Phong
shading, disabled shadows) [Berges et al. 2023; Petrenko et al. 2021;
Savva et al. 2019]. While more realistic appearance simulation is
likely to be desirable in fields like robotics where the ultimate goal
is to use simulation to train agents that operate successfully in the
real world, the exact requirements and benefits of realistic rendering
remain an open research question. For example, techniques such
as domain randomization [Sadeghi and Levine 2017; Tobin et al.
2017] of low-fidelity images are used as alternatives to high-fidelity
rendering to close the sim-to-real gap. In summary, high-quality
shading and lighting is not a requirement for a rendering system to be
useful for a wide range of agent training workloads.

Dynamic scene generation and modification. While realistic ap-
pearances are not a requirement for modern training workloads,
environment diversity is [Deitke et al. 2022]. Each training episode
might take place in a different 3D scene, or in a scene that is procedu-
rally generated on the fly at the start of an episode. These different
scenes may feature different scene assets, and different numbers
and locations of objects. When simulating thousands of parallel
episodes, potentially of different lengths, the rendering structures
for new environment instances must be constructed (and cleaned
up) frequently and efficiently during training.

4 BATCH RENDERER IMPLEMENTATION

In this section, we describe blink, a high-throughput interface
for communicating environment state updates (object movement,
creation and deletion, etc) from GPU batch simulators to high-
performance batch renderer backends. Using blink, we then present
the implementation of two batch renderers, brast and btrace, that
meet the feature and performance requirements in Section 3.

4.1 GPU Batch Simulator – Batch Renderer Interface

A key design challenge in any high-performance graphics system
involves architecting how the simulator communicates environment
state, and state changes, to the renderer [He et al. 2017]. Unfortu-
nately, the vast majority of graphics systems make a fundamental
assumption: environment simulation logic is controlled by the host
CPU with environment state residing in CPU memory. As a result,
their renderers only provide a CPU-side interface to communicate
environment state updates via standard graphics hardware APIs.
CPU-side renderer interfaces are inefficient for state-of-the-art

GPU-accelerated batch simulators because these systems execute
environment simulation logic on the GPU. These simulators must
employ expensive synchronization and data read back operations to
copy environment state from the GPU to the CPU, and then pass it
through CPU-side APIs that ultimately copy it back to GPU memory
for rendering. Moreover, it can be challenging for CPU code to
efficiently parallelize the large number of renderer state updates
needed for thousands of batch-simulated environments.
To address these inefficiencies we present blink (Batch ren-

derer/simulator Linkage), a high-performance interface between
GPU batch environment simulation and batch rendering that allows
GPU simulation logic to communicate environment state updates
to the renderer in parallel and entirely through GPU memory.
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Fig. 2. blink allows a GPU batch simulator to communicate environment

state changes to the renderer in a high-performance and memory-efficient

manner. blink stores all instance data, across all environments, in a column-

major table in GPU memory (“Renderable Instance Table”) that permits

parallel allocation, deallocation, and update by the batch simulator. After

the batch simulator has completed all updates, blink sorts this table by

environment id to enable fast data access by the renderer. (Not shown: a

similar design is used to store view information.) Object assets are stored

separately from the instance table, allowing mesh and texture data to be

allocated once and shared across all environments.

4.1.1 Batch Renderer Interface Concepts. blink extends standard
instanced rendering APIs to the multi-environment batch setting by
providing simulators an interface for allocating, deallocating, and
updating the following entities:

(1) Environments. From the perspective of a renderer, an envi-
ronment serves as a namespace to encapsulate a set of object
instances and views.

(2) Objects correspond to 3D assets (made up of triangle meshes
and optionally textures). Objects are referenced by a unique,
global ID and are not specific to any one environment.

(3) Object instances, which are associated with a specific envi-
ronment, and maintain position and rotation transforms that
define their position in that environment. A single object may
be instanced many times, across many environments.

(4) Views define camera parameters and are also associated with
a specific environment. Each environment can have multiple
views. The batch renderer is responsible for rendering output
frames for all views across all environments. Currently, views
share the same image parameters (height, width, etc.)

The challenge when implementing this interface on the GPU
is how to allow efficient parallel creation, deletion, and updates
of instance and view data while ultimately aggregating data in a
format suitable for efficient batch rendering.

4.1.2 Implementation. blink addresses this challenge by adopting
recent low-footprint, parallelism-friendly GPU memory manage-
ment strategies that favor throughput over latency [Shacklett et al.
2023] and storing data for all instances (and all views) across all
environments in large, contiguous GPU memory buffers that enable
efficient access and lookup by renderer backends.
Fig. 2 illustrates how instance data for all environments is orga-

nized into a single table and updated by the batch simulator. At
the end of each environment simulation step, the batch simulator

updates instance information for all instances in all environments
by using the renderer API to map instance ids to an offset in the
table, and then updates the table’s contents (e.g., position and ro-
tation transforms) in parallel using GPU threads. Parallel instance
allocation is implemented by atomically incrementing a pointer to
append new instances to the table. Parallel deletion is implemented
by marking a row in a table as invalid (the environment ID is set to
-1). Similar schemes are used to modify view information.

After the simulator has updated instance and view data, blink pre-
pares the data for efficient rendering. The parallel allocation scheme
described above can lead to instances (or views) from different en-
vironments being interleaved in the table, presenting a problem
for renderer backends that require efficient access to data for each
environment. To solve this problem, blink globally synchronizes
across all environments before rendering begins, and sorts the rows
of the instance and view data tables by environment ID [Adinets and
Merrill 2022]. After the sort, control is transferred to the renderer
backend along with pointers to each environment’s instance and
view data, which is now continuous in memory (Fig. 2, “Env Offset
Buffer”).
blink’s synchronization and sort step is pragmatic in a batch

setting since maximizing overall throughput is prioritized over min-
imizing per-view rendering latency. In the subsequent sections we
discuss how the sorted table layout aids common rendering tasks
such as GPU command buffer construction and BVH construction.
The sort also serves to bring deleted rows (with environment ID
-1) to the end of the table, so memory reclamation efficiently im-
plemented at the end of each simulation step by truncating the
table. Row allocation is simplified by mapping the table to a large
region of virtual memory that can be backed by physical pages as
necessary [Shacklett et al. 2023].

As illustrated in Fig. 2, object data is allocated once in the system,
and reused across all instances from all environments.

4.1.3 blink Simulator Integration. blink defines the binary format
of the aforementioned in-memory table structure, but it does not
stipulate how a batch simulator creates and populates the structure.
A batch simulator seeking to communicate with a blink renderer
need only export contiguous GPU memory buffers containing in-
stance and view data tagged by environment ID in the struct-of-
arrays table format described above. Given this data (along with
optional additional renderer-backend data provided as additional
table columns), blink will sort the data internally and then invoke
the batch renderer backend. Providing renderer state updates in the
correct tabular format is the lowest-level option for using blink. For
convenience, we also provide a CUDA C++ API that GPU batch sim-
ulators can access to create and populate buffers. This API provides
methods for atomically assigning table rows and virtual memory
management. We use the C++ wrapper to implement integrations
with two GPU batch simulators as described in Section 5.

4.2 brast: A Batch Rasterizer

Our batch rasterizer (brast) is an evolution of bps3d, the Vulkan-
based batch rasterizer that achieved orders of magnitude speedups
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over prior non-batch renderers when rendering 3D scans of real-
world scenes [Shacklett et al. 2021]. The original bps3d implementa-
tion has two major limitations in the context of this work: 1) bps3d
only provides a CPU simulator interface, with no efficient pathway
for high-performance GPU batch simulators, and 2) multi-agent
training experiments are not possible due to an internal limitation
of one view per environment. We address both these limitations by
replacing bps3d’s front-end simulator interface and CPU-side state
management with blink, and then reimplement bps3d’s GPU-driven
culling and batch rendering strategy using blink structures.
Specifically, brast accesses the instance and view data buffers

exposed by blink directly in a GPU-compute pass that performs
frustum culling in parallel across instances. As a result, brast avoids
per-instance CPU-GPU transfer costs incurred by bps3d. Addition-
ally, since blink exposes per-environment instance and view data for
fast GPU lookup, brast, unlike bps3d, supports supports multi-view
rendering. bps3d parallelizes frustum culling using one warp (32
threads) per view. Warp threads cooperatively loop over instances
in the view’s environment, yielding high execution coherence even
when different environments in a batch have different numbers of
views (e.g. varying numbers of agents per environment).

4.3 btrace: A Batch Raytracer

The combination of low output image resolution and the relatively
high geometric complexity of many learning environments yields
a rendering workload featuring many small-area triangles (often
subpixel) that is known to map poorly to modern GPU-accelerated
graphics pipelines [Fatahalian et al. 2010; Karis 2021]. Acting on
this observation, we create a second batch renderer implementation
based on ray tracing (btrace).
btrace is a software-based batch ray tracer written in CUDA

using persistent threads [Aila and Laine 2009]. Its design follows
many best practices in high-performance GPU ray tracing, such as
a two-level BVH to handle dynamic scenes [Parker et al. 2010], and
the use of compressed, wide BVHs to reduce memory bandwidth
and dependent memory accesses [Ylitie et al. 2017]. The bottom level
BVH for each object is constructed off-line, and both construction
costs and the resulting GPUmemory storage are amortized across all
environments in the batch. The top-level BVH for each environment
holds object instances, and is constructed from scratch each frame
using the LBVH algorithm [Lauterbach et al. 2009].
blink enables two important optimizations for the LBVH im-

plementation. A standard LBVH build begins by spatially sorting
instances by morton code. Rather than introducing the overhead of
a separate parallel sort within btrace, we extend the instance sort
already performed by blink to support an optional secondary sort
key that btrace uses to pre-sort instances by morton code within
each environment before the LBVH build begins. (We hypothe-
size that blink’s support for multiple sort keys is generally useful;
e.g., a rasterizer might pre-sort environment instances by depth.)
After the sort, btrace leverages the contiguous data layout of per-
environment instances to efficiently construct all per-environment
LBVHs in parallel via a single compute kernel dispatch. Specifically,
btrace combines the instance data across all environments into a
single highly parallel LBVH build [Karras 2012] that keeps the BVH

tree structure for each environment separate using bounds checks
against the environment offsets provided by blink.

One key aspect of our solution is that it does not utilize hardware-
accelerated ray tracing APIs (e.g., Vulkan, Optix). Our initial proto-
types found these platforms demonstrate poor throughput under
the load of constructing many small top-level BVHs. In addition,
flagship datacenter AI GPUs, a primary hardware target for our
work, currently lack ray tracing acceleration hardware.

5 EVALUATION

Using our brast and btrace batch-renderers, we perform a system-
atic study of the efficiency of batch rendering performance across
several popular embodied AI datasets and two GPU device classes
commonly used for embodied AI research. We use this study to
evaluate our design decisions, understand the current performance
of our state-of-the-art implementations, and also to identify oppor-
tunities for performance optimization going forward.

5.1 Experimental Setup

5.1.1 Benchmark Learning Environments. We focus our study on
dynamic, interactable environments created by active embodied AI
research communities interested in pixels-to-actions training. We
select four example datasets that span a gamut of scene complexity
and AI task diversity.

• MadronaHide and Seek is a multi-agent learning environment
built in Madrona [Shacklett et al. 2023], a GPU-accelerated batch
simulation framework. Prior versions of Hide and Seek provide
internal engine state to agents. We modify the environment to
support vision-based agents by attaching a RGB camera to each
agent. The environment contains five agents, each represented
as spheres (several hundred triangles each). All other objects are
simple geometric primitives with less than ten faces per object.
Objects are either solid colored or use simple textures. This is
the simplest environment in the benchmark from a rendering
perspective and is typical of modern environments used to learn
multi-agent teamwork [Baker et al. 2020].

• MuJoCo MJX Barkour is a quadruped robot simulated in Mu-
JoCo MJX (a GPU-accelerated batch physics engine) [Limited
2024]. This environment includes one depth-only camera view-
ing the Barkour robot from top-down as it moves on a plane.
Rendered geometry is taken from MJX collision assets for the
robot (30 instances, ∼230K total triangles). This environment is a
proxy for typical of robotics research: small-scale environments
with a few detailed geometries.

• ProcTHOR is a collection of 64 procedurally generated home
interiors randomly drawn from the thousands of scenes in the
ProcTHOR dataset [Deitke et al. 2022]. We load these environ-
ments into the Madrona engine and place a single RGB camera
in a random location in each environment to represent the agent.
The camera follows a random path through each environment.
On average these scenes feature ∼244K triangles and ∼70 object
instances.

• HSSD is a collection of 64 detailed, human-authored building
interiors (homes and apartments) randomly drawn from the
Habitat Synthetic Scenes Dataset [Khanna et al. 2023]. Like
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Hide & Seek MJX BarkourProcThor HSSD

Fig. 3. Example agent views from environments from the four benchmarks. Scene complexity ranges from simple geometric primitives (Hide and Seek) to

millions of triangles per environment in apartment-scale scenes (HSSD). All environments generate RGB images, except MJX Barkour, which only requires

depth rendering. Hide and Seek is a multi-agent environment where the same environment is rendered multiple times to produce observations from the

perspective of each agent. All other benchmarks involve single-view environments.
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Fig. 4. Throughput of the brast and btrace batch renderers across all environments on RTX 4090 and H100 GPUs. btrace significantly outperforms brast in

all configurations on the H100, since the H100 is a datacenter class GPU with lower amounts of rasterization hardware. Even on the RTX 4090, the prototype

btrace renderer is competitive with brast on the more geometrically complex HSSD and MJX Barkour scenes.

ProcTHOR, HSSD is loaded into the Madrona engine and bench-
marked with one RGB camera. With high resolution textures
and on average 7.6M triangles (∼330 instances) per environment,
HSSD exhibits significantly greater visual detail than prior syn-
thetic embodied AI datasets. It serves as a proxy for increasingly
complex future embodied AI environments.

Figure 3 shows example renderings from all benchmarks.

5.1.2 Benchmarking Setup. We measure renderer throughput on
two important classes of GPUs for AI training: a NVIDIA GeForce
RTX 4090 (a high-end consumer-grade GPU, often used for smaller
scale AI experiments) and a NVIDIA H100 Tensor Core GPU (a
high-end datacenter GPU for AI, used for large-scale agent training).
The RTX 4090 benchmark machine uses a Intel Core i9 13900K CPU.
The H100 is located in a Google Compute Engine A3 instance.

The resolution of images provided to agents varies significantly
in the literature depending on the task being learned. To evaluate
a range of different performance regimes, we measure throughput
for each dataset at resolutions typical for agent training: 64×64,
128×128 and 256×256 pixels per view [Shacklett et al. 2021; Stooke
et al. 2021; Szot et al. 2021; Wijmans et al. 2020].

Following prior work we fix batch size in all experiments to 1024
environments, a practical size for training vision-based agents [Shack-
lett et al. 2021]. Larger batch sizes would increase renderer through-
put, but potentially hit GPU memory limitations during training.
Hide and Seek is procedurally generated, so all environments in a

batch have unique, randomly generated layouts. When rendering
HSSD and ProcTHOR, we sample 16 unique scenes from the dataset
and generate a batch of 1024 environments using these scenes (differ-
ent agent initial conditions). This setup mimics end-to-end training,
where due to memory limitations, scene assets will typically be
swapped on and off the GPU during training. Environments where
agents receive RGB observations use Phong lighting.

5.2 Renderer Throughput Comparison

Figure 4 plots the throughput (in aggregate frames/sec) of brast
and btrace, and illustrates that the relative performance between
the two renderers depends heavily on output image resolution
and the GPU hardware being used. On the RTX 4090 (a consumer
gaming GPU), high fixed-function rasterizer throughput results
in brast outperforming btrace when screen-space triangle area
is larger (higher image resolutions, lower-geometric complexity
scenes). On the higher geometric complexity scenes (MJX Bark-
our and HSSD), brast throughput is bound by the performance of
triangle-processing hardware. Profiling tools on the RTX 4090 show
that the Primitive Distributor bottlenecks the performance in higher
geometry environments. Since the H100 includes less fixed-function
triangle processing hardware than the RTX 4090 (it is designed
for AI workloads, not 3D graphics performance), the H100 btrace
achieves significantly higher throughput than brast on nearly all
benchmark conditions. In the extreme case, even when rendering
HSSD at 256×256 resolution, btrace is still 22× faster than brast.
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Fig. 5. brast and btrace throughput on the RTX 4090 as the number of

views per environment increases (64×64 pixels per view). The performance

of btrace improves relative to brast with increasing view count because

btrace amortizes BVH build costs across views. This efficiency results in

btrace outperforming brast on ProcTHOR when rendering more than two

views per environment.

While more advanced GPU-driven culling [Karis 2021] and geo-
metric level-of-detail solutions could improve brast’s performance
by reducing the number of triangles the hardware rasterizer must
process, these efforts would require significant renderer engineering,
and still may not close the performance gap. These results suggest
that to achieve high end-to-end system throughput for embodied AI
training, either architects of datacenter AI GPUs should consider pro-
visioning more fixed-function triangle processing hardware in their
designs, or batch renderers for embodied AI should be built on ray
tracing based methods. We also note that btrace currently features
only basic GPU ray tracing optimizations. We believe further per-
formance engineering would not only substantially increase the
btrace-brast performance gap on the H100, but likely close most
of the btrace-brast performance gap on the RTX 4090.
A second trend is that on all benchmarks but HSSD, overall

batch renderer throughput is high. For example, when rendering at
128×128 on the RTX 4090, aggregate btrace performance is nearly
100𝐾 FPS. At these rates, significant performance engineering of
DNN policy inference/training is required to keep up with the batch
renderer. This suggests that for the first time, performance headroom
unexpectedly exists to explore how more sophisticated rendering
techniques (e.g., more advanced lighting simulation, or simulating
artifacts of real sensors) might benefit training [Chattopadhyay et al.
2021]. btrace is a significantly more versatile renderer for exploring
the potential of more advanced rendering effects.

5.3 Multi-Agent Environment Scaling

Multi-agent training workloads are an exciting area of embodied AI,
and an interesting domain for btrace, because rendering costs can
be amortized across multiple views of the same environment. Fig. 5
compares the performance of brast and btrace on the RTX 4090
in a hypothetical multi-robot task that scales the views per environ-
ment from 1 to 8 in ProcTHOR and HSSD. Increasing the views per
environment provides opportunities for btrace to amortize the cost
of building an environment’s top-level BVH across all views, unlike
brast, which processes geometry for each view independently. As
a result, the performance of btrace improves relative to brast on
both datasets as view count increases. In the case of ProcTHOR,
btrace begins to outperform brast after two views.

HSSD

MJX Barkour
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0 20 40 60 80 100
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Hide & Seek

H100

Sort Bulid Trace
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Fig. 6. A breakdown of the performance of btrace while rendering a batch

of 1024 environments at 128×128 pixels. Both the radix sort used by blink

and the LBVH build consume a small fraction of per-batch costs relative to

ray tracing time. This suggests future work to improve BVH build quality

would likely improve performance.

Table 1. Rendering throughput at 64×64 resolution of brast compared

against the prior state of-the-art batch renderer, bps3d [Shacklett et al.

2021]. brast leverages the high-throughput simulator interface provided by

blink to eliminate CPU-side setup costs and outperforms bps3d, especially

when rendering low-cost environments where CPU costs can limit overall

renderer throughput.

Renderer Hide and Seek (FPS) MJX Barkour (FPS)

brast 1056K 111K
bps3d 589K 76K

5.4 btrace Performance Analysis

btrace represents a prototype-quality implementation of a software
batch ray tracer on the GPU. To understand current bottlenecks and
inform future optimization, Fig. 6 illustrates the fraction of total time
spent in stages of btrace execution when rendering a batch of 1024
environments at 128×128 pixels. Note that blink only consumes
a small fraction of total time each batch (purple bar) to perform
sorting of instances by environment and Morton code. Even for
HSSD, where each environment has hundreds of instances, less than
10% of total time per batch is spent sorting.

The dominant cost in all configurations is tracing rays. This sug-
gests that replacing the fast LBVH build step (which occupies less
than 10% of runtime) with a slower, but higher quality BVH build
algorithm could reduce overall render time by making ray traversal
more efficient. In a batch renderer, top-down BVH builds could be
parallelized across environments, an axis of parallelism that does
not exist in real-time GPU rendering workloads. In addition, many
lower-level optimizations are possible to lower ray traversal costs,
such as further compression of BVH nodes and triangle indices,
and leveraging on-chip shared memory for ray traversal optimiza-
tions [Vaidyanathan et al. 2019; Ylitie et al. 2017].
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5.5 blink Renderer Interface Performance

Finally, we directly evaluate the benefits of blink on renderer
throughput. Table 1 ablates our design by comparing the perfor-
mance of brast (which uses blink to interface with the batch simu-
lator) against bps3d for the Hide and Seek andMJX Barkour datasets.
We constrain Hide and Seek to have one agent per environment
since bps3d does not support multi-view environments.

Recall bps3dwas a prior state-of-the-art batch rasterizer that uses
a CPU-side interface to communicate with the batch simulator. This
requires copying camera data and instance transforms from the GPU
batch simulator back to the CPU each frame. bps3d compacts the
instance data in CPU memory and uploads it back to the GPU. The
resulting copy and synchronization overheads limit the throughput
achieved by bps3d. Overall brast outperforms bps3d by 1.8× on
Hide and Seek and 1.5× on MJX Barkour. blink also allows brast
and btrace to support multiple views per environment, and the
above results show this additional flexibility does not come at a
performance cost. blink allows the two GPU-driven subsystems
to interoperate efficiently without CPU intervention, and provides
benefits both in terms of improving throughput but also enabling
new multi-agent training workloads.

6 DISCUSSION

Training embodied computer vision based agents in simulated envi-
ronments is an emerging area that stands to be a major consumer
of future computer graphics systems. Our work contributes new
rendering systems optimized for this workload. Perhaps more impor-
tantly, we hope that by characterizing the field’s rendering require-
ments, and identifying a set of benchmark scenes for evaluation of
future systems, our work leads to further progress in this interesting
area of high-performance graphics.

Our investigations, although preliminary, suggest interesting op-
portunities going forward. For example, although nearly every prior
system used for fast rendering in this domain is based on rasteriza-
tion, the widespread use of datacenter GPUs for training, as well
as the growing geometric complexity of training scenes, suggests
that software ray tracing-based renderers that leverage the full pro-
grammable capability of these GPUs, are likely a more performant,
and pragmatic design going forward.
Our results also suggest that a well-architected batch renderer

can achieve exceptionally high throughput on scenes in frequent use
in embodied AI research today. This suggests new possibilities for
AI reseachers to consider how learning algorithms could best take
advantage of much greater amounts of collected experience, or how
to utilize more advanced rendering algorithms to help train agents
in simulation that exhibit new capabilities, such as more advanced
skills, or more robust transfer of the skills learned in simulation to
AI agents operating in the real world.
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