What's the best way to contact Madrona's developers?
Please contact us by opening a GitHub issue or directly reaching out via email to the first author of the SIGGRAPH 2023 Madrona publication.
What environments / tasks does Madrona support?
Madrona is not an RL environment simulator. It is a game engine / framework that makes it easier for developers (like RL researchers) to create their own custom learning environment simulators for their own custom tasks that achieve high throughput by running on GPUs. For example, instead of creating a new environment simulator using an existing game engine like Unity or Unreal, you might consider creating it using Madrona to achieve significantly higher experience generation throughput.
We try to maintain an updated list of environment simulators built with Madrona on the Madrona GitHub README. If you've made your own environment using Madrona and want to share, let us know and we'll add it to the list.
My learning task requires simulation of complex dynamical systems in contact-rich settings. (I currently use MuJoCo or IsaacGym.) Is Madrona a good fit for my work?
At the moment, probably not. Madrona currently provides a XPBD-based rigid body physics library for basic 3D collision and contact support. (This library is used by our 3D Hide and Seek and Escape Room example environments.) However, tasks that require advanced physics implementations (such as robotics manipulation tasks) are likely better off using other systems at this time. Hopefully in the future we can find ways to integrate libraries like MuJoCo or Isaac Gym into Madrona by allowing them to communicate with the rest of the game engine using ECS structures. This would enable the development of new environments that are unconstrained in their custom game logic and also benefit from world-class physics simulation.
Does Madrona have rendering support? Can I use Madrona for training "pixels to actions" agents?
Madrona includes a high-throughput batch renderer for "pixels to actions" training. For more information, see our blog about the renderer. On both RTX 4090 and H100 GPUs, the renderer achieves framerates of over 300K FPS on geometrically simple scenes like Hide and Seek and 30K FPS on high geometric complexity scenes such as Habitat Synthetic Scene Dataset (HSSD), which has on average 7 million triangles per scene.
I have an existing environment simulator written in Python. What is the easiest way to port it to Madrona?
At this time Madrona requires game logic to be written in C++, so using Madrona will require porting this logic to C++ and re-organizing your game state to leverage the entity component system architecture. Bidipta Sarkar has a great post on porting the Overcooked-AI environment to Madrona. That post describes the process of extracting the core simulation logic from a large Python code base and re-implementing it using Madrona's C++ APIs. A trivial port of Overcooked-AI was done in only a few days, and it increased simulator performance by over 1000X. The Madrona github repo also contains links to sample projects that can be used as starter code for creating new environments.
Can I use Madrona while keeping parts of my simulator (e.g., reward functions) in Python?
Yes. While Madrona currently requires the core custom environment simulation logic for a task to be written in C++, logic that executes at the end of the simulation step like reward functions can be implemented using PyTorch tensor operations. This is possible by exporting any of the internal simulation state (ECS components) needed as input to the reward functions as PyTorch tensors, and then computing rewards in PyTorch after Madrona finishes the current step. Madrona provides built-in support for exporting ECS components to PyTorch, making this relatively straightforward.
How is Madrona related to projects like NVIDIA Warp or Numba?
Projects like NVIDIA Warp and Numba (and others) aim to make GPU programming easier by bringing high-level languages (Python) to the GPU. These frameworks could provide a high-productivity way to author individual ECS systems for use within the Madrona engine. A useful future project would be to engineer the appropriate support for generating Madrona-compatible CUDA kernels from ECS systems written in these languages. (Contact us if you're interested in contributing!)
Doing so would allow developers to build complex batch simulators while realizing the productivity benefits of expressing environment logic in high-level languages and the performance benefits of using ECS APIs for efficiently managing state (custom components, creating and deleting entities) and gluing together different systems.
Can I use Madrona with a different learning framework than PyTorch?
Madrona exports simulation state to learning frameworks using nanobind's dlpack integration that supports most common frameworks. Currently, only PyTorch entry points for this functionality are exposed, because that is the framework we use and test. If you're interested in using Madrona with a different learning framework, please open a GitHub issue with a link to training code in your preferred framework for testing purposes and we can add the core engine support.